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Commensurate-incommensurate transitions are ubiquitous in physics and are often accompanied by intrigu-
ing phenomena. In few-layer graphene �FLG� systems, commensurability between honeycomb lattices on
adjacent layers is regulated by their relative orientation angle �, which is in turn dependent on sample prepa-
ration procedures. Because incommensurability suppresses interlayer hybridization, it is often claimed that
graphene layers can be electrically isolated by a relative twist, even though they are vertically separated by a
fraction of a nanometer. We present a theory of interlayer transport in FLG systems which reveals a richer
picture in which the specific conductance depends sensitively on �, single-layer Bloch-state lifetime, in-plane
magnetic field, and bias voltage. We find that linear and differential conductances are generally large and
negative near commensurate values of �, and small and positive otherwise. We show that accounting for
interlayer coupling may be essential for describing transport in FLG despite its physically insignificant effect
on the band structure of the system.
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I. INTRODUCTION

Experimental advances in the fabrication of graphene-
based structures1,2 have now provided researchers with a
multitude of systems that have strikingly distinct electronic
properties. By engineering the substrate underlying exfoli-
ated samples,3–5 identifying exfoliated fragments with folds6

or controlling epitaxial growth conditions,7–9 the size and
shape of the honeycomb lattice arrays10,11 and the number of
graphene layers and their orientations can all be varied. This
structural diversity nourishes hopes for a future carbon-based
electronics12 with band-structure and transport characteristics
that can be tailored for different types of applications.

Few-layer graphene �FLG� has advantages over single-
layer graphene because it has a larger current-carrying capac-
ity and because its electronic properties are sensitive to more
engineerable system parameters.13 In nature it appears in a
variety of stacking arrangements, the most common being
Bernal and rhombohedral sequences which form three-
dimensional lattices. It has been understood for some time14

that in graphite � can depart from Bernal values. With some
interesting exceptions,5,15 most recent studies of interlayer
twists in FLG have focused on samples grown on SiC.16 In
particular, Hass et al. have demonstrated that orientational
disorder is normally present in carbon-face SiC epitaxial
FLG samples.17 The present work is motivated primarily by
the need to achieve a more complete understanding of trans-
port in these graphitic nanostructures, which currently appear
to provide the most promising platform for applications.

In a bilayer system, the relative rotation angle � can be
classified as either commensurate or incommensurate.18 In
the former case the misaligned bilayer system still forms a
crystal, albeit one with larger lattice vectors and more than
four atoms per unit cell. Commensurability occurs at a
countably infinite set of orientations but the probability that a
randomly selected orientation angle is commensurate van-
ishes. The energy bands of commensurate twisted multilay-
ers disperse approximately linearly with momentum,19–21 ex-
cept at energies very close to the Dirac point. However, the

Dirac velocity is reduced compared to that of a single-layer
system especially for rotation angles close to 0° or 60°.15,20

The linear Dirac-type dispersion contrasts with the approxi-
mately quadratic dispersion found in a Bernal stacked bilayer
system.22 Incommensurate bilayers are not crystalline23 and
therefore their electronic properties cannot be analyzed using
Bloch’s theorem.

Here we develop a theory for the vertical transport prop-
erties of twisted FLG samples which is valid in the incoher-
ent transport limit.24 We show that the specific linear conduc-
tance between misaligned layers is enhanced over a small but
finite range of twist angles near those that produce relatively
short-period commensurate structures, that the conductance
peak angles shift with in-plane magnetic field B�, and that the
peaks become narrower and stronger when the isolated-layer
Bloch-state lifetime � increases. The differential conductivity
tends to be negative near commensurate conductance peaks
and positive otherwise. Typical theoretical results for the de-
pendence of the interlayer equilibration rate on � are pre-
sented in Fig. 1. In the following we first explain the analysis
which supports these statements and then discuss some im-
plications for FLG electronics.

II. INTERLAYER CURRENT

Studies of transport between weakly coupled two-
dimensional �2D� electron systems have a long history25,26 in
semiconductor heterojunctions systems. In that case epitaxial
tunnel barriers are responsible for nearly perfect 2D momen-
tum conservation, which then helps to make vertical trans-
port a powerful probe of electronic properties. Our theory of
vertical transport in FLG is similar to the successful semi-
conductor heterojunction theory.25 We derive an expression
for tunneling current I vs bias voltage V by using a �-orbital
tight-binding model, approximating interlayer hopping pro-
cesses at leading order in perturbation theory, and accounting
for the inevitable presence of a finite disorder potential
which limits the life times of Bloch states in each layer.
These steps lead to
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I��� = egs� d�

2�
�nF1��� − nF2�� + eV��

��
kp�

�Tkp�
�� �2A1��k,��A2��p�,� + eV� , �1�

where gs=2 accounts for spin degeneracy, Ai��k ,�� is the
spectral function for band � and layer i, nFi is the Fermi
distribution function for layer i, and Tkp�

�� is the tunneling
matrix element between isolated-layer Bloch states with
band and crystal momentum labels, �k�	 and �p��	. The
sums over k and p� may be taken over the unrotated and
rotated Brillouin zones, respectively. We derive Eq. �1� in
Appendix B, where we justify its neglect of disorder vertex
corrections. In our calculations, A is approximated by a
Lorentzian function with full width half maximum 	 /� cen-
tered on the band energy 
i��k�. �Hereafter 	=1 and length is
measured in units of ac=1.42 Å, the carbon-carbon distance
in graphene.� Equation �1� is valid in the weak tunneling
regime in which T is smaller than lifetime broadening 1 /�,
allowing coherent tunneling processes to be neglected. This
condition is satisfied in typical samples except at rotation
angles very close to 0° or 60°.

In a twisted bilayer system the tunneling matrix element
depends strongly on the relative orientation of the two
graphene sheets. The honeycomb lattice vectors of the ro-
tated layer R� are related to those of the unrotated layer R by
R�=M���R+d. Here M is the transformation matrix for ro-
tations in the lattice plane and d is a translation vector. Cor-
responding rotations occur in reciprocal space so that


1��p�=
2��p�� when p�=M���p. Commensurability is de-
termined only by M, but linear translations of one layer rela-
tive to the other do modify T, and hence the tunneling cur-
rent.

The magnitude of T depends on the �-orbital interlayer
hopping amplitudes of our tight-binding model which we
estimate using a simple two-center approximation scheme
explained in Appendix A. We find that

Tkp�
�� =

1

�0
�
s,s̄

�aks
�����aps̄

��� �
G1G2

tk+G1
e−i�k+G1�·d

� eiG1·�se−iG2·�s̄�k+G1,p�+G2�
, �2�

where �0 is the area of a unit cell. Here G1 and G2 are
summed over reciprocal-lattice vectors, primed wave vectors
are rotated, s and s̄ label the two triangular honeycomb sub-
lattices centered at positions �s, and aks

��� is the sublattice
projection of the �k�	 Bloch state in the unrotated layer. In
Eq. �2�, which is derived in Appendix A, tk is the 2D Fourier
transform of the finite-range interlayer hopping amplitude.
As we will explain, the interlayer conductance and the layer
equilibration rate are proportional to �tk�2 values for �k�’s that
are larger than the Brillouin-zone scale �except for �

0° ,60°�. Because the interlayer distance is already larger
than the carbon-carbon distance within a layer, these �tk�2
values tend to be both extremely small and extraordinarily
sensitive to details of the interlayer tunneling model that are
otherwise inconsequential.

We have used Eqs. �1� and �2� to evaluate interlayer cur-
rents as a function of rotation angle �, carrier density, bias
voltage, and disorder strength. Since for typical electronic
densities the temperature T is much less than the Fermi tem-
perature we focus on T=0 hereafter.

III. LINEAR CONDUCTANCE

It is helpful to first focus on the linear conductance

G��� =
e2gs

2�
�
kp�

�Tkp�
�� �2A1��k,
F�A2��p�,
F� . �3�

The equilibration rate plotted in Fig. 1 was obtained by view-
ing the bilayer as a leaky capacitor and ignoring any screen-
ing by graphene 
 orbitals. This model yields an RC circuit
with time constant �RC related to the conductance by G /A
=0.027�RC

−1 , where A is the layer area in m2, G is measured in
siemens, and �RC in seconds. Apart from a change in scale,
Fig. 1 can then be viewed as a plot of the interlayer conduc-
tance. We find that the tunneling conductance increases
abruptly near commensurate angles, that the height of the
peaks scales linearly with 
F� �for 
F��1�, and that the
peaks narrow as � increases. The discontinuous jumps of
log�G� in Fig. 1 are artificial and result from a numerical
procedure in which momenta k and p� in Eq. �3� are re-
stricted to the vicinity of the Fermi energy. This procedure
suppresses the tails of all commensurate features, allowing
more minor features to be revealed. In practice the conduc-
tion tails corresponding to highly commensurate structures
will dominate G over a range of angles that depends on �.
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FIG. 1. �Color online� Interlayer �RC� equilibration rate as a
function of twist angle �. These results were calculated for two
layers with equal carrier densities �n=5�1012 cm−2� and 
F�=3,
where 
F is the Fermi energy and � is the isolated-layer Bloch-state
lifetime. The relaxation rate is dominated by separate features that
appear near every commensurate angle but differ in strength by
many orders of magnitude. The tails of individual features have
been cut off in this plot in order to reveal weaker features that
will emerge in more ideal bilayers. Except near �=0° ,60°,
the equilibration rate is surprisingly slow for two layers sep-
arated by an atomic length scale. The six conduction peaks in
the figure correspond to the commensurate angles near
13.2° ,21.8° ,27.8° ,32.2° ,38.2°, and 46.8°.
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Limited by computational power we considered �−1


75 meV in Fig. 1, however, in epitaxial graphene the life-
time can be more than an order of magnitude longer.27 An
accurate theory of the conduction-peak tails would require a
reliable theory of the isolated-layer spectral-function tails.

Why is the tunneling conductance enhanced at commen-
surate rotation angles? To understand the relation between
interlayer current and commensurability it is illuminating to
plot the Fermi surfaces of both layers, periodically extended
in momentum space by adding reciprocal-lattice vectors to
the crystal momenta of the electrons. As we see in Eq. �2�,
allowed interlayer tunneling processes are diagonal in this
generalized momentum. The left panels in Fig. 2 correspond
to the incommensurate rotation angles �=17° ,26° whereas
the right panels correspond to the commensurate angles near
�=21.8° ,27.8°. We use different Fermi surfaces’ sizes for
clarity; similar considerations apply independent of the sign
or magnitude of the carrier density ratio. The key feature to
notice in these plots is that at commensurate rotation angles
some Fermi spheres overlap. Overlaps of circles centered on
the extended Dirac points, always accompany commensurate
real-space structures because the set of extended Dirac points
forms a momentum-space honeycomb lattice that differs
from the real-space honeycomb lattice only by a scale factor
and by a rotation. If overlaps occur in real space, they also
occur in momentum space. Notice that this property holds
only when the Brillouin-zone corners are extended to fill
momentum space; if the Dirac point occurred elsewhere in
the isolated-layer Brillouin zone, the dependence of inter-
layer conductance on � would be quite different.

The overlap of extended Dirac points does not fully ex-
plain the conductance peaks at finite density since Fermi

energy states at finite carrier density are displaced from the
Dirac point. The nesting between Fermi surfaces alluded to
in Fig. 2 actually depends not only on commensurability but
also on the fact that for typical carrier densities the Fermi
surface is well approximated by a circle centered on the
Brillouin-zone corners. For equal densities then, matching
Dirac points implies complete Fermi-surface nesting �see
Fig. 3�. When the two layers have different densities, the
peak conductance will not occur at the nesting angle; instead
the conductance will have a double-peak structure with fea-
tures offset to both sides of the commensurate angle.

Commensurate rotation angles can be classified as either
intervalley or intravalley. In the former the two Dirac points
kD and kD� that coincide in the extended momentum picture
are associated with different valleys �in the aligned bilayer�
whereas for intravalley rotation angles they belong to the
same valley. An intervalley commensurate rotation is illus-
trated in Fig. 3.

Away from commensurate angles the energy difference
between states which have the same extended momentum is
typically much larger than the Fermi energy, and the
spectral-function width 1 /� �see left panels of Fig. 2�. The
conductance is therefore very small away from the
commensurate-angle peaks. The Dirac-type linear spectrum
of an ideal commensurately twisted bilayer does not, as is
commonly stated, indicate that the ideal twisted layers are
decoupled. At commensurate angles the perfect-crystal wave
functions near the Dirac point are in fact coherent equal-
weight contributions from the two layers. In the limit of large
in-plane Bloch-state lifetimes, the conductance becomes very
large and eventually the incoherent transport picture will fail.

As we have explained, vertical transport at commensura-
bility is dominated by processes in which an electron tunnels
from a momentum near a Dirac point of one layer, to a mo-
mentum that is the same distance from a Dirac point of the
other layer. Since carrier densities per unit cell are always
small, we can replace tk+G in Eq. �2� by tkD+G, where kD is

FIG. 2. �Color online� Fermi circles in an extended-zone
scheme. The blue�large� and red�small� circles correspond to the
Fermi circles in the unrotated and rotated layers, respectively. The
area enclosed by the circles is proportional to the carrier density.
Conductance contributions occur when the Fermi circles intersect
and are much larger when the intersection occurs closer to the ori-
gin of momentum space. The Brillouin-zone boundary connects the
centers of the inner shell of blue circles as indicated by the dashed
lines in the �=17° panel.

FIG. 3. �Color online� Nesting of Dirac cones at commensura-
bility. For commensurate rotation angles every momenta state on
the rotated Fermi circle is mapped onto a momenta state of an
unrotated Fermi circle.
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the Dirac point momentum. We then find that the conduc-
tance peak can be expressed as

G 
 Rcc��c,d� � F�
F�� . �4�

Here �c is the commensurate orientation,

F = �
k

A1�k,
F�A1�k,
F�

=
A

2�v2 �2 + 2�
F� + 4
F� arctan�2
F��� �5�

is the phase-space factor which is identical to the one that
appears in the theory of coupled quantum wells,25 and

R�� =� d�k

2�
�T����k��2 �6�

is the geometric matrix that depends on the relative align-
ment of the two layers. Strictly speaking, the interlayer cur-
rent is a sum of four distinct processes, associated with the
four entries of R��, in which an electron from band � in one
layer tunnels to band � in the other layer. However, for the
linear conductance of an electron doped system Rcc domi-
nates G.

The geometric matrix R��c ,d� depends mainly on the
value of t�kD+G� at which the extended Dirac points overlap
�see Fig. 2�. For pure rotations R can be calculated analyti-
cally. We defer the details to Appendix C where we find that

Rcc��c,d = 0� =
Eg

2��c�
16

� �4 cos2�� − �c/2� �c � S

1 �c � D
� ,

�7�

where �c�S correspond to intravalley commensurate angles
and �c�D to their intervalley counterparts. The angle � as-
sumes one of the three values 0 , �60 depending on �c, e.g.,
��0°�=0, ��27.8°�=60°, and ��38.2°�=−60°. As we show
in Sec. V the tunneling amplitude in Eq. �6� is related to the
energy gap Eg �the difference between the highest conduc-
tion band and lowest valance band� at the Dirac point. It then
follows from Eq. �4� that

G��c,d = 0� = Agsgv
e2

	


F�

�v2Rcc��c,d = 0� �8�

for 
F��1, where gv=2 accounts for the valley degeneracy.
We numerically verify that the conductance changes only by
a factor of order unity as d is varied across the unit cell �see
Fig. 4�. Equation �8� therefore provides a good estimate for
G regardless of the relative translation between the two lay-
ers. Interestingly, the ratio

�G��c� 

GS��c,d = 0�

GD�60 ° − �c,d = 0�
= 4 cos2�� −

�c

2
� �9�

depends only on the twist angle. For example, �G�27.8°�
=1.94 in accord with the numerical results depicted in Fig. 4.

Electronic-structure calculations for ideal commensurate
bilayers demonstrate that Eg decreases very rapidly as the
number of atoms per unit cell increases.18 Eg=780 meV for

a unit cell of four atoms, and already less that 1 meV for a
unit cell of 100 atoms. It is therefore plausible that conduc-
tance tails that correspond to the few lowest-order commen-
surate angles �e.g., �c=0° ,21.8° ,27.8° ,32.2° ,38.2° ,60°�
will dominate G at every rotation angle. Equation �8� should
therefore be interpreted as a lower bound for the conductance
at higher-order commensurate �c’s.

Commensurability depends only on the relative rotation
of the two graphene layers. Nevertheless linear translation of
one layer with respect to the other will change the tunneling
current. In Fig. 4 the conductance at �=27.8° is plotted as a
function of d for a bilayer with n=5�1012 cm−2 in each
layer and 
F�=3. The dependence of the tunneling current on
d is periodic in the lattice vectors of both layers.

As illustrated in Fig. 1 the conductance peaks appear sym-
metrically around �=30° but the height of a peak with �
�30° does not necessarily equal the height of the corre-
sponding peak at ��=60°−�. In fact, the relative height of
the two peaks depends on d. An AA stacking sequence can
be transformed to Bernal stacking either by a pure rotation
with �=60° or by a translation with d= �1,0�. Since the latter
transformation does not influence commensurability any
commensurate angle �c of the AA stacked bilayer is a com-
mensurate angle of the Bernal stacked bilayer. The conduc-
tance peaks then lie symmetrically with respect to �=30°
since if � is commensurate so is its inverse.

IV. NONLINEAR I-V

We now turn to the nonlinear I-V of twisted bilayer
graphene. At zero temperature

I��,V� =
egs

2�
�
kp

�Tkp��
2�


F−eV


F

d�A1�k,��A2�p�,� + eV� .

�10�

We numerically find that the I-V curves at commensurate and
incommensurate angles are drastically different. At relatively
small bias voltage the currents corresponding to commensu-

FIG. 4. �Color online� Dependence of conductance per unit cell
G on translation d for �=27.8°, 
F�=3, and n=5�1012 cm−2.
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rate angles are several orders of magnitude larger than their
incommensurate counterparts. On the other hand negative
differential conductances invariably appear at commensurate
angles whereas dI /dV tends to be small and positive at in-
commensurate angles.

In classic tunneling experiments, a bias voltage induces
an electric potential difference between the layers. Total-
energy conservation then implies kinetic energy changes
equal to eV upon tunneling. Since, as we have explained, the
allowed tunneling processes at commensurate angles are be-
tween states with the same kinetic-energy bias voltages tend
to decrease tunneling currents. Following the same approxi-
mations that led to Eq. �4� we can capture this effect math-
ematically by expressing the interlayer current in product
form

I =
e

2�
�
��

R����,d��
−�

�

d��nF��� − nF�� + V��

� �
K

A��k,��A��k,� + eV� . �11�

In Eq. �11� we have allowed for both intraband and interband
tunneling at large biases. As long as eV�
F tunneling be-
tween conduction bands dominate I when both layers are n
type. In this intermediate nonlinear regime the two Lorentz-
ian shaped spectral functions in Eq. �11� overlap only weakly
and

I��c,d� 
 G��c,d�
V

1 + �eV��2 �12�

for 
F��1. Negative differential conductance occurs when
eV��1. For incommensurate twist angles, crystal momenta
conservation cannot be sustained at the Fermi surface. In-
creasing V unblocks processes in which tunneling occurs be-
tween states with different kinetic energies and leads to a
slow increase in the tunneling current with a complex depen-
dence on tq and 	 /�. For eV�
F, the current increases
monotonically with V for both commensurate and incom-
mensurate twist angles. The commensurate tunneling current
has a sharp rise at eV=2
F due to momentum conserving
processes allowed at high bias voltage in which a valence-
band electron in one layer tunnels to the conduction band of
the opposite layer. For commensurate angles it follows from
Eq. �11� that these interband processes eventually dominate
the tunneling current and that

I 

e2

4v2Rvc��V − 2
F�V �13�

to leading order in 1 /V�. Here � is the Heaviside step func-
tion. The finite-temperature corrections to Eqs. �12� and �13�
are exponentially small in T /
F. For d=0 we find in Appen-
dix C that

Rvc��c,d = 0� =
Eg

2��c�
16

� �4 sin2�� − �c/2� �c � S

1 �c � D .
�
�14�

V. ENERGY BANDS FOR TWISTED BILAYERS AT
COMMENSURABILITY

In the vicinity of the Dirac point the Hamiltonian for the
twisted bilayer is well approximated by

H = �Hk T

T† Hk���
� . �15�

Here Hk is the intralayer Hamiltonian and T is the 2�2
interlayer tunneling matrix. For commensurate rotation
angles we show in Appendix C that

TD = ei�2�k+�c��a�I �16�

and that

TS = 2ei��+�c/2��a�� cos�� −
�c

2
� − i sin�� −

�c

2
�

− i sin�� −
�c

2
� cos�� −

�c

2
� �

�17�

in the eigenstate representation. Here TS and TD correspond,
respectively, to intravalley �S=same� and intervalley �D
=different� rotation angles. The intralayer Hamiltonian
Hk���=
k
z is independent of the rotation angle in the eigen-
state basis. It then follows form Eq. �15� that the four non-
degenerate bands corresponding to bilayers with intervalley
rotation angles are

Ek
D = � �
k

2 + 2�a�2 � 2�
k
2�a�2 + �a�4. �18�

At low energies 
k�a

Ek1
D = �

k2

2m� , Ek2
D = � 2�a� �

k2

2m� , �19�

where m�= �a� /v2. For the intravalley rotations

Ek
S = � �
k

2 + 4�a�2 � 4�a�
k cos�� − �c/2� . �20�

At low energies 
k�a

Ek
S = � 2�a� � v�k , �21�

where v�=v cos��−�c /2�. Deviations from expressions �16�
and �17� for T result in trigonal warping in an AB bilayer
system. More elaborate studies of the spectrum are needed to
determine whether such effects are important in a rotated
bilayer system as well. Similar results were recently obtained
by Mele.28

For either type of rotation Eg=4�a�. As mentioned above,
Eg is extremely small for all but the most commensurate
structures. It is not surprising then that band-structure experi-
ments seem to indicate that FLG systems act as independent
graphene layers. Nevertheless, as we explain in the next sec-
tion, accounting for the interlayer coupling may be essential
for describing the transport in FLG systems.

VI. DISCUSSION

One application of our theory is to assess whether or not
twisted graphene layers are effectively isolated from an elec-
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trical point of view. The equilibration time between layers
that are spatially uniform but out of equilibrium is plotted in
Fig. 1 and is very long compared to characteristic electronic
time scales for rotation angles far from important commen-
surabilities �near 10°, for example�. The steady-state equili-
bration length between separately contacted layers can be
estimated by equating interlayer conductances, which are
proportional to sample area, with the intralayer conductance
per square. For the commensurate angle �c=21.8°, for ex-
ample, the sample area at which they are identical is approxi-
mately 0.04 �m2. As evident from Fig. 1, the corresponding
areas for small rotation angles near the AA and AB stacking
sequences are even smaller. For small rotation angles, the
two layers are therefore strongly coupled.

The interlayer conductance G��� is peaked whenever any
extended Fermi-surface overlap occurs at reasonably small
reciprocal-lattice vectors. The degree of overlap can be pa-
rameterized by q�, the minimum separation between ex-
tended Dirac points of the rotated and unrotated layers for a
reciprocal-lattice vector truncation chosen to reflect the scale
on which tq falls off. For a clean system, tunneling conduc-
tance at equal density is appreciable as long as q�
��
−�c��k+G��2kF. Because 2kF in FLG electronic systems is
always small compared to reciprocal-lattice vector scales, the
conductance peaks are invariably sharp when plotted as a
function of �. As an example q�
6.39��−�c� in the vicinity
of �c=27.8° for the reciprocal-lattice vector illustrated in
Fig. 2. In Fig. 5, q�, minimized over the first two G shells, is
plotted as a function of angle. Overlap between the Fermi
spheres of the two layers will therefore persist over the angle
range for which q� is smaller than 2kF.

When the densities differ, Fermi circles in different layers
begin to overlap near �=�c only after a momentum-space
relative shift Q equal in magnitude to the difference of the
two Fermi wave vectors. As in semiconductor double
wells,25,26,29 a shift Q= ẑ� êd� / lH

2 , where lH is the magnetic
length, can be accomplished in a bilayer with layer separa-
tion d� by applying an in-plane magnetic field B�ê. For
graphene bilayers, however, a relative momentum-space shift
can also be achieved by rotation, as is clear from Fig. 2. For
small departures from commensurability Q
��−�c�ẑ� �kD
+G�. For equal densities, both rotations and in-plane fields
dramatically suppress the conductance peak when vQ�1 /�,
where v is the band velocity of graphene. For example, for

n=4�1012 cm−2 and �=50 fs,6 the conductance peak
should nearly completely disappear at 0.15 T. FLG should
therefore provide a palette on which gate voltages, in-plane
magnetic fields, and rotations can be mixed to produce a
rainbow of interrelated and extraordinarily strong magnetic
field and strain-sensitive resistance effects.

The extension of our theory to FLG is straightforward in
the linear regime. In the simplest case each layer is rotated
with respect to its neighbors sufficiently to drive the system
into an incoherent transport regime. The weak links between
layers then act like classical resistors which appear in series
in vertical transport. The resistance of each link depends on
the rotation angle between layers and on the densities in both
layers. We anticipate a very rich and complex behavior of
FLG in the nonlinear regime. The negative differential con-
ductivities are likely to give rise to steady-state multistability
and to chaotic temporal response, as occurs in semiconductor
multiple-quantum-well systems.31 A more complicated sce-
nario could arise in turbostratic graphene. There the entire
layered structure is composed of a set of coherent multilayer
substructures, characterized by either a Bernal or an AA
stacking sequence. Weak links which play a dominant role in
limiting vertical conductance appear due to occasional
twists. The calculations for the resistance of each twisted
interface closely follow those outlined above for the two-
layer case when supplemented by a band index for the vari-
ous 2D energy bands of a coherent substructure.

Finally we remark that the extraordinary sensitivity of the
tunneling conductance to the twist angle found here suggests
that misaligned graphene bilayers might be useful as ultra-
sensitive strain gauges or pressure sensors32 which are
widely used in biological, mechanical, and optical systems.
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APPENDIX A: THE TUNNELING MATRIX ELEMENTS

The interlayer hopping terms in a �-band tight-binding
Hamiltonian for twisted graphene bilayers depend in general
on the positions of all carbon atoms. Our analysis of inter-
layer conductance and equilibration is based on a simple
two-center model in which the interlayer hopping parameter
between two sites, t�r�, depends only on the planar projec-
tion of their separation r. In the main text we used an equa-
tion, derived below, which relates the interlayer hopping am-
plitudes of twisted bilayers to tq, the two-dimensional
Fourier transform of t�r�.

One strategy which can be used to estimate t�r� is to
assume functional forms for the distance dependence of the
Slater-Koster tpp
 and tpp� hopping functions,33 and then fit
them to accurately known parameters of untwisted bilayers.
We have explored this approach, following the procedures
adopted in Refs. 18 and 30 but have concluded that it tends
to underestimate hopping amplitudes near the Dirac points of

0 20 40 60
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q*
intra−valley
inter−valley

FIG. 5. �Color online� The minimum separation between ex-
tended Dirac points q� as a function of rotation angle �.
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twisted bilayers. We have therefore decided to obtain nu-
merical estimates by directly fitting an ansatz for tq to obtain

tq = t0e−��qd���
, �A1�

where t0=2 eV Å2, �=0.13, �=1.25, and d�=3.34 Å is the
distance between the layers. The value used for t0 is the
average of values implied by the models in Refs. 18 and 30.
Since t0 is the sum of all interlayer hopping parameters, it
should be estimated reliably by any parameterization that
uses accurate values for the largest hopping parameters. We
fix � and � so that the values of the ideal bilayer gaps are
accurate for the lowest-order commensurate structures.
These are proportional to tkD

��=0° and �=60°� and t6.4/ac
��=21.8° and �=38.2°�, where ac=1.42 Å is the carbon-
carbon distance in single-layer graphene. See details in Ap-
pendix C below. We fit the energy gaps to values extracted
from the ab initio calculations by Shallcross et al.18 Note that
these values of tq characterize short-distance roughness in
the interlayer hopping landscape which survives Fourier
transformation at large wave vectors, are not simply related
to typical interlayer hopping strengths. The energy gaps that
we obtain at �=21.8° using the real-space parameterizations
of tpp
�r� and tpp��r� in Refs. 18 and 30 are both substan-
tially smaller than the ab initio gaps of Shallcross et al.18

We now derive the expression for the hopping amplitude
between Bloch states in twisted bilayers that is used in the
main text. The Bloch state in layer j with crystal momentum
k and band index � can be written as

��k�
�j� 	 = akA

j� ��kA
�j� 	 + akB

j� ��kB
�j� 	 , �A2�

where A and B label the two triangular honeycomb sublat-
tices,

�akA
1�

akB
1� � =

1
�2
�ei�k

�
� , �A3�

and �k is the phase of the intersublattice hopping term in the
single-layer tight-binding model. For nearest neighbor hop-

ping within the planes �k=arg�� je
ik·�j�, where the � j are the

three vectors connecting an atom with its nearest neighbors.
The Bloch-state projection on sublattice s is

��ks
�1�	 =

1
�N

�
R

eik�R+�s���s + R	 , �A4�

where ��s+R	 is a site-representation basis function of the
tight-binding model. In Eq. �A4� R is a triangular lattice
vector, N is the number of unit cells in the system, and we
choose �A=0 and �B equal to the vector connecting the two
atoms within a unit cell.

The relative orientation of the two layers can be described
by a rotation matrix M��� and a translation vector d. There-
fore every Bloch wave function in the second layer is related
to a Bloch wave function in the first layer by

��k��
�2� 	 = ��k�

�1�	 �A5�

with �R+�s	 in layer 1 replaced by �R�+�s�	 in layer 2, r�
=Mr+d for all positions and k�=Mk. Using primes to indi-
cate layer 2 variables and invoking the two-center approxi-
mation for the interlayer tunneling amplitude,

��s + R�Hinter��s� + R�	 = t��s + R − �s� − R�� , �A6�

we find that

Tkp�
�� 
 ��k��Hinter��p��	

=
1

N
�
ss�

�aks
�����aps�

��� �
R1R2

e−ik·�R1+�s�+ip·�R2�−d+�
s�
� �

�t�R1 + �s − R2� − �s�
� � . �A7�

Expression �2� in the main text is obtained by Fourier ex-
panding t�r� and summing over the lattice vectors.

APPENDIX B: VERTEX CORRECTIONS

The general expression for the tunneling current

I��,V� = − 4egs� d�

2�
�n2�� + eV� − n1���� � Tk0p0�

�� TkNpN�
��� Im G1��

R �kN,k0,��Im G2��
R �p0�,pN� ,� + eV� �B1�

is obtained using second-order perturbation theory.34 In Eq.
�B1� nj is the Fermi distribution in layer j, Gj��

R is the re-
tarded Green’s function in layer j that correspond to the
propagation of a charge carrier from band � to band �, the
rotation angle is �, and V is the bias voltage. The over line
denotes disorder averaging. As in the main text, primed vari-
ables are associated with the rotated layer. Since disorder
breaks translation invariance, the Green’s functions are not
diagonal is the momentum representation. When the disorder
averages can be performed independently for the two layers,

translational invariance is recovered and Eq. �B1� reduces to
Eq. �1� of the main text.

We average over disorder using the self-consistent Born
approximation in which correlations between the layers ap-
pear as a vertex-correction ladder diagram sum �see Fig. 6�.
For simplicity we assume white-noise disorder and charac-
terize the correlation between the disorder potentials in the
two layers by �=ni�U1U2	, where ni is the concentration of
impurities and Uj is the disorder potential in layer j. For
aligned bilayers with short-range tunneling we find that

TRANSPORT BETWEEN TWISTED GRAPHENE LAYERS PHYSICAL REVIEW B 81, 245412 �2010�

245412-7



G =
e2t2�F�

2

1

1 − �/�
, �B2�

where �=ni�Uj
2	. As evident from Eq. �B2� the tunneling

conductance diverges if the disorder potentials of the two
layers are perfectly correlated. These strong correlations are
likely in a graphene bilayer because of the small distance

between the layers. The divergence of G indicates the break-
down of perturbation theory, i.e., it invalidates the incoherent
theory we use in this work. A similar scenario arises for
tunneling between coupled semiconductor quantum wells25

when their disorder potentials are strongly correlated.
We now show that vertex corrections are important only

at very small values of the rotation angle �. The physical
origin of this behavior is twofold. First, the relevant correla-
tion in the twisted case is between the disorder potential in
one layer and a spatially rotated counterpart in the other
layer. For any finite-range disorder correlation length, these
two disorder potentials are independent making � in Eq. �B2�
considerably smaller. Second, the divergence in the conduc-
tance appears due to tunneling between identical states.
However, for incommensurate angles the wave vectors of the
initial and final states in a tunneling process substantially
differ making � in Eq. �B2� considerably larger. In the fol-
lowing paragraphs we explain how this latter behavior is
captured in a diagrammatic perturbation-theory description
of a disordered system.

We first focus on the tunneling conductance for aligned
layers ��=0�. At zero temperature

G��� =
2e2gs

�
� Tk0p0�

�� TkNpN�
��� Im G1��

R �kN,k0,
F�Im G2��
R �p0�,pN� ,
F� . �B3�

The conservation of crystal momentum in expression �2� for
Tkp�

�� implies that p0=k0 and that pN=kN. For 
F��1 inter-
band transitions are inhibited so that �=� and �=�. Due to
the spinor form of the wave functions each disorder line
contributes �1+cos��kj+1

−�kj
��� /2 to the ladder diagram. To

evaluate ��n�, the ladder diagram with n disorder lines, we
first integrate over the angular variables using

�
0

2� d�q

2�
cos��k1

− �q�cos��k2
− �q� =

1

2
cos��k1

− �k2
� .

�B4�

Then using F�0�=2��F�, where

F�Q� = �
q

G1�
R �q,��G1�

A �q + Q,�� , �B5�

we integrate over the radial direction. In obtaining F�0� we
have replaced the energy-dependent density of states by �F,
its value at the Fermi energy. We find that for n�1

��n� = G1
��k0�G2

��k0��1 +
1

2n−1cos��k0
− �kN

��
���

�
�n−1�

2
G1

��kN�G2
��kN� , �B6�

where �=1 /��F� and � ,�=R ,A. For n�2 the Green’s
functions in one layer are retarded and those of the other

layer are advanced. We now sum ��n� to infinite order in n.
While the sum can clearly be carried for a general tunneling
matrix element Tkk the basic physical idea is more transpar-
ent for short-range tunneling. Therefore in the calculations
below we assume Tkk= t is momentum independent in which
case we recover Eq. �B2�.

We now address the role played by vertex corrections is
twisted bilayers. As in the main text our discussion excludes
the vicinity of �=0° ,60° for which t�1 /�. The procedure
outlined above for calculating G can be repeated for any
rotation angle �. For a rotated bilayer it follows from Eq. �2�
in the main text that k0−p0�=G2�−G1
Q, where Q
�kD
+G1���−�c�. Expression �B2� can then be used for a rotated
bilayer as well if � is replaced by

�Q = �F�0�/F�Q� . �B7�

Because F is a monotonically decreasing function of its ar-
gument and because Q is comparable in size to the Dirac
momentum �Q��.

APPENDIX C: THE GEOMETRIC MATRIX

Using a representation of sublattice sites in each layer we
find that at the Dirac point

. . . . .

k0kN

��0

K0+q

��0+q
��N

q

FIG. 6. �Color online� Self-consistent Born approximation. A
bubble diagram with ladders.
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T = TS = 2�a��1 0

0 e−2i� �, T = TD = 2�a��1 0

0 0
� . �C1�

Here TS and TD correspond, respectively, to intravalley and
intervalley rotation angles, and �=0, �60 depends on �c as
explained in the main text. If the hopping amplitude tq de-
creases fast enough with momentum so that only the first G
shell significantly contribute to the tunneling matrix

�a� = 1.5
tkD+G1

�0
, �C2�

where �0 is the area of a unit cell and G1 is the wave vector
which produces the smallest q extended-zone Dirac-cone
overlap as explained in the text. In our model Eq. �C2� is
satisfied for all commensurate angles except for �=0° ,60°
for which �a�=1.67tkD+G1

/�0. Diagonalizing H0 yields ES

= �2�a� �both doubly degenerate� and ED=0,0 , �2�a�. In
both cases the energy gap between the top conduction band
and bottom valence band is therefore Eg=4�a�.

To find R we assume that T is well approximated by Eq.
�C1� for finite momentum states in the vicinity of the Dirac

points. We verified this assumption numerically for low den-
sities. In the eigenstate representation

Tkp�
�� = ak�

1��ak�
1�Tkp�

�� �kp� �C3�

from which Eqs. �16� and �17� readily follow. We then obtain
from Eq. �6� that

RD = �a�I �C4�

and

RS = 4�a�2�cos2�� −
�c

2
� sin2�� −

�c

2
�

sin2�� −
�c

2
� cos2�� −

�c

2
� � . �C5�

An interesting consequence of Eqs. �4�, �C4�, and �C5� is that
interband resonant conduction �which occurs when the car-
rier densities in the two layers are opposite� has the same
form as its intraband counterpart for intervalley rotation
angles. For the interband conduction at intervalley rotation
angles the cos function in Eq. �8� should be replaced by a
sin.
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